Ma2a Practical – Recitation 7

November 15, 2024

Exercise 1. (Revisit) Let $x(t)$ be a solution of the IVP

$$
x'' = 2x - 4x^3, \quad x(0) = 1, x'(0) = 0.
$$

Is it true that $x(t)$ is a periodic function? Draw the phase diagram of the system

$$
\begin{cases} x' = y \\ y' = 2x - 4x^3 \end{cases}
$$

Exercise 2. (See Chapter 9.1 Exercise 6 and 19) Consider the following system of D.E.:

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

- 1. Find the eigenvalues of the matrix.
- 2. The trajectories of the system can be converted into the following equation:

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{x - 2y}{2x - 5y}
$$

which is an exact D.E.

3. Solve the above exact D.E.:

$$
x^2 - 4xy + 5y^2 = C
$$

where C is a constant. Conclude that the phase portrait is a family of ellipse.

Exercise 3. (See Chapter 9.3 Exercise 7) Consider the following system of D.E.:

$$
\frac{dx}{dt} = 1 - y
$$

$$
\frac{dy}{dt} = x^2 - y^2
$$

- 1. Find all critical points.
- 2. Near each critical points, find the correspoonding linear systems.
- 3. Find the eigenvectors of all the linear systems and draw conclusions¹ about the nonlinear system.

TABLE 9.3.1 Stability and Instability Properties of Linear and Locally Linear Systems

Note: N, node; IN, improper node; PN, proper node; SP, saddle point; SpP, spiral point; C, center.

Exercise 4. (See Chapter 9.7 Example 1) In this exercise, we will study the periodic solution of the nonlinear D.E. Now consider the following system of D.E.:

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x + y - x(x^2 + y^2) \\ -x + y - y(x^2 + y^2) \end{bmatrix}
$$

- 1. Express $\frac{d\mathbf{r}}{dt}$ and $\frac{d\theta}{dt}$ in terms of $\frac{dx}{dt}$ and $\frac{dy}{dt}$.
- 2. Show that $r = 1$ and $\theta = -\frac{t^2}{2} + \theta_0$ is a periodic solution of this D.E.
- 3. Find the general solution.
- 4. Study the stability of this periodic solution.

¹ see theorem 9.3.2 in textbook

FIGURE 9.7.1 Trajectories of the system (4); the circle $r = 1$ is a limit cycle.

At
$$
f_{\tilde{U}}
$$
 notes Reitation?

\nIm(unqress and existence)

\n $y' = f(t,y)$. $y(s) = 0$

\nif f and $\frac{3f}{\alpha y}$ are continuous, around (0,0), then $f(x) = \frac{1}{2}(\sinh(\pi x, y, y, x))$

\nis the unique solution.

\nIs the unique solution.

\nConsider y : If the two interval is $y(t)$ class in y , i.e., 1 to $s(t)$ and $y(t+1)$.

\nSo, the following solution is the two interval, $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $y(t)$ and $y(t+1)$.

\nSo, the following solution is $\int \frac{dx}{dt} = f(x)$.

\nSo, the following solution is $\int \frac{dx}{dt} = f(x)$.

\nSo, the following solution is $\int \frac{dx}{dt} = \int f(x)$.

\nSo, the following solution is $\int \frac{dx}{dt} = \int f(x)$.

\nSo, the following solution is $\int \frac{dx}{dt} = \int f(x)$.

\nSo, the following solution is $\int \frac{dx}{dt} = \int \frac{dx}{dt} = \int \int \frac{dx}{dt} =$

Matrix representation of conic sections. $Ax^2 + Byxy + Cy^2 + Dx + Ey + F = 0$ $\frac{X}{R^{k}}$ + $\frac{Y}{9}$ = 1 cricle / empse $y = ax + b)^2 + b$ If (B^2-4AC) $\begin{cases} 70 \\ =0 \end{cases}$ Parabola $X - 2.51$ hyperbola $e_{\hat{y}}$ x^2 $\times y + y^2 - 3y - 1 = 0$ 1 change center by translation $x = x' + h$ (h, k) are new center $x^2 - x^2 - x^2 - x^3 + x^2 (2h-k) + y^2 (-h+2k-2) + h^2 - h^2 + k^2 - 3k+1 = 0$ $1-e$, x'^2 - $x'y' + y'^2 = 4$ $h \circ \underline{1 - 5t}$. $\begin{cases} h = k \\ h = 2 \end{cases}$
 $h \circ \underline{1 - 5t}$. $\begin{cases} h = 1 \\ h = 2 \end{cases}$ 2 No x'y', by rotation. $x' = X \cos \theta - Y \sin \theta$ $y' = X$ $sin\theta + \gamma cos\theta$ \rightarrow \star y(sin²0 ω s²0) + X^2 (sin²0 + ω s²0 -sin0 ω s0) + Y^2 (cos²0 + sin²0 + sin0 cos0) = 4 $5.0:10$ ~> $\frac{x^2}{8} + \frac{3y^2}{8} = 1$ $\begin{cases} x = \frac{\sqrt{3}}{2} (x - \gamma) +1 \\ y = \frac{\sqrt{3}}{2} (x - \gamma) +2 \end{cases}$

Recitation:				
Ex	Set	$(2-x - 5)$	$(x-2)(x+2) + 3 = x^2 + 4 + 5 = x + 1$	$(3x - 1) + 1$
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			
Set	$x = \pm i$			

EXECUTE:

\n
$$
\begin{aligned}\n\left[\frac{x'}{y'}\right] &= \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ x-y \end{pmatrix} \\
\left[\frac{x'}{y'}\right] &= \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ x-y \end{pmatrix} \\
\left[\frac{x-1}{x-y}\right] &= 0 \quad \text{if } \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} \begin{pmatrix} x-1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} + \frac{x-1}{y-1} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] \begin{pmatrix} 1 \\ y-1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix} \\
\left[\frac{x-1}{y} - 1\right] &= \begin{pmatrix} 1 \\ y+1 \end{pmatrix
$$

- $\dot{x} = A\vec{x}$ Case 1: real, unequal eigenvalues of same sign 0 $\vec{\chi} = c_1 \cdot \xi^{(1)} \cdot e^{r_1 t} + c_2 \xi^{(2)} \cdot e^{r_2 t} = \dots e^{r_2 t} (c_2 \cdot g^{(2)} \cdot e^{\hat{y} t} + c_1 g^{(1)} \cdot e^{r_1 - r_2 \hat{y}})$
	- \bullet if $r_1 < r_2 < 0$

node/model sink

2 if ocrearly then same but veverse

node / nodal source

Case 2: real, unequal eigenvalues of opposite signs.

 $\overline{X} = C. \xi^{(1)} e^{r_1 t} + C_2. \xi^{(2)} e^{r_2 t}$

 $r_1 70 r_1 60.$

Saddpoint

Case3: Equal arguments ,
$$
r_1 = r_2 = r
$$

\n
$$
\overrightarrow{A} = c_1 \cdot \overrightarrow{e}^{(1)} e^{rt} + c_2 \cdot \overrightarrow{e}^{(2)} \cdot e^{rt}
$$
\n
$$
\overrightarrow{r} = c_1 \cdot \overrightarrow{e}^{(1)} e^{rt} + c_2 \cdot \overrightarrow{e}^{(2)} \cdot e^{rt}
$$
\n
$$
\overrightarrow{r} = \sqrt{c_1 \cdot \overrightarrow{e}^{(1)} + c_2 \cdot \overrightarrow{e}^{(1)} + c_1 \cdot \overrightarrow{e}^{(1)} + c_2 \cdot \overrightarrow{e}^{(1)} + c_2 \cdot \overrightarrow{e} + c_2 \cdot \overrightarrow{e}
$$

Case4: Complex eigenvalues
\n①
$$
\lambda \pm i\mu
$$
 st $\lambda \pm 0$
\nConsider $\overline{x}' = (\lambda, M) \overline{x}$ [Problem22. The result is given by the formula.
\n $\int r = C \cdot e^{\lambda t}$
\n $\theta = -\mu t + \theta_0$, θ is a value of θ at $t = 0$, $\tan \theta_0 = \frac{x_1(t)}{x_1(t)}$
\n $(1) \frac{1}{2} M 7 9$, θ decreases
\n(a) $t \rightarrow \infty$, $r \rightarrow 0$ if λ is a
\n $r \rightarrow 0$ if λ is a
\n $r \rightarrow 0$ if λ is a
\n λ is a $t = 0$, $\frac{1}{2} M$
\n $\overrightarrow{x}' = (\frac{0}{2} M)^2 M$ giving the value of \overrightarrow{u} and \overrightarrow{u} is the
\n $\overrightarrow{y}' = (\frac{0}{2} M)^2 M$ giving the value of \overrightarrow{y} and \overrightarrow{y} is a
\n $\overrightarrow{y}' = (\frac{0}{2} M)^2 M$ giving the value of \overrightarrow{y} and \overrightarrow{y} is a
\n $\overrightarrow{y}' = (\frac{0}{2} M)^2 M$